src

Hepatitis C Prediction Package

This package provides machine learning tools for Hepatitis C classification using PyTorch neural networks with an interactive Streamlit interface.

Modules

data

Data loading, preprocessing, and dataset creation utilities.
Contains HepatitisDataset class for PyTorch data loading.

models

Neural network model definitions (HepatitisNet with residual connections).
Includes model saving/loading and evaluation utilities.

train

Training utilities and ModelTrainer class for model training workflows.

visualization

Plotting and visualization functions for data exploration and results.
Quick Start
>>> from src.data import load_raw_data, clean_data, prepare_features, HepatitisDataset
>>> from src.models import HepatitisNet, evaluate_model, save_model, load_model
>>> from src.train import ModelTrainer
>>> from torch.utils.data import DataLoader
>>> 
>>> # Load and prepare data
>>> data = load_raw_data()
>>> cleaned_data, encoder = clean_data(data)
>>> X, y, imputer = prepare_features(cleaned_data)
>>> 
>>> # Create dataset
>>> dataset = HepatitisDataset(X_train, y_train)
>>> train_loader = DataLoader(dataset, batch_size=32, shuffle=True)
>>> 
>>> # Create and train model
>>> model = HepatitisNet(input_size=12, hidden_sizes=[128, 64, 32])
>>> trainer = ModelTrainer(model, device='cuda')
>>> history = trainer.train(train_loader, val_loader, epochs=50)
Authors
License

MIT License - See LICENSE file for details.

Repository

https://github.com/Ninjalice/HEPATITIS_C_MODEL

Documentation

https://ninjalice.github.io/HEPATITIS_C_MODEL/src.html

 1"""
 2Hepatitis C Prediction Package
 3
 4This package provides machine learning tools for Hepatitis C classification
 5using PyTorch neural networks with an interactive Streamlit interface.
 6
 7Modules
 8-------
 9data
10
11    Data loading, preprocessing, and dataset creation utilities.
12    Contains HepatitisDataset class for PyTorch data loading.
13    
14models
15
16    Neural network model definitions (HepatitisNet with residual connections).
17    Includes model saving/loading and evaluation utilities.
18
19train
20
21    Training utilities and ModelTrainer class for model training workflows.
22
23visualization
24
25    Plotting and visualization functions for data exploration and results.
26
27Quick Start
28-----------
29>>> from src.data import load_raw_data, clean_data, prepare_features, HepatitisDataset
30>>> from src.models import HepatitisNet, evaluate_model, save_model, load_model
31>>> from src.train import ModelTrainer
32>>> from torch.utils.data import DataLoader
33>>> 
34>>> # Load and prepare data
35>>> data = load_raw_data()
36>>> cleaned_data, encoder = clean_data(data)
37>>> X, y, imputer = prepare_features(cleaned_data)
38>>> 
39>>> # Create dataset
40>>> dataset = HepatitisDataset(X_train, y_train)
41>>> train_loader = DataLoader(dataset, batch_size=32, shuffle=True)
42>>> 
43>>> # Create and train model
44>>> model = HepatitisNet(input_size=12, hidden_sizes=[128, 64, 32])
45>>> trainer = ModelTrainer(model, device='cuda')
46>>> history = trainer.train(train_loader, val_loader, epochs=50)
47
48Authors
49-------
50- Endika Aguirre (https://github.com/Ninjalice)
51- Igor Vons (https://github.com/Yngvine)
52- Wassim Bouzarhoun (https://github.com/Krypto02)
53
54License
55-------
56MIT License - See [LICENSE](https://github.com/Ninjalice/HEPATITIS_C_MODEL/blob/main/LICENSE) file for details.
57
58Repository
59----------
60https://github.com/Ninjalice/HEPATITIS_C_MODEL
61
62Documentation
63-------------
64https://ninjalice.github.io/HEPATITIS_C_MODEL/src.html
65"""
66
67__version__ = "0.1.0"
68__author__ = "Ninjalice"
69__license__ = "MIT"
70
71# Control what modules are exposed by this package
72__all__ = [
73    "data",
74    "models", 
75    "train",
76    "visualization"
77]